Ve Search Algorithms

Exploring linear and binary search: from theory to practice in C++

000
000

Computer Science 101: ———
Algorithms & Data Structures

1070101
0110100
TH0T0H
1070101

Lecture Plan: "Search
Algorithms"

O1

Motivation and Examples

Why search algorithms are needed in everyday life and programming

02

Classification of Methods

Linear vs. binary search, iterative and recursive approaches

03

Practical Implementation

Writing C++ code, complexity and performance analysis

04

Comparison and Conclusions

When to use which algorithm, practical recommendations

Lecture Title

Search
Algorithms

Topics to Cover Lecture Goal
e Linear Search Understand the principles of search
o Binary Search algorithms, learn to implement them in

C++, and choose the optimal approach

for specific tasks. We will explore how

 Recursive Approach computers efficiently find necessary
data in arrays and other structures.

e |terative Approach

=DHO

o ocC
B oo o
E oHOFRFOFBFQ -

Motivation and Real-Life Examples

—| Searching for abook on a A?’/ Searching for aword in a O Computer Systems
S dictionary Searching for a contact on a phone, a
We browse books one by one until we We open the dictionary in the middle fileina fOldGﬁ a record in a database —
find the desired one. This is a classic and decide whether to search in the seargh algonthms are used everywhere
example of linear search — a simple, first or second half. We repeat until the .to qwckl'y retrieve the necessary
but not always fast approach. word is found — this is the principle of information.

binary search.

Search algorithms are the foundation of many software solutions. Understanding their principles will help create more efficient applications.

Main Types of Algorithm Complexity

Asymptotic notations are used to evaluate algorithm performance, describing how the execution time or memory usage of an algorithm grows with an
increase in input data size.

— 00— —o0— o0 —

Big-0O (O-notation) Big-Omega (Q-notation) Theta (O-notation)

The upper bound of function growth — the The lower bound of function growth — the A precise asymptotic estimate, covering
worst-case scenario for execution. best-case scenario for execution. both worst and best cases.

Complexity

Main Types of Algorithm
Complexity

O(1) - Constant

Time does not depend on data size. Example: accessing an array element by
index

. ————

O(log n) - Logarithmic

Time grows slowly. Example: binary search

e

O(n) - Linear

Time is proportional to the number of elements. Example: linear search

e

O(n log n) - Linearithmic

Efficient sorting algorithms. Example: MergeSort

ARy

O(n?) - Quadratic

Each element is compared with all others. Example: bubble sort

_—

O(2"n) - Exponential

Time doubles with each increment. Example: subset enumeration

Visual Comparison of Complexity
Growth

Comparison table for different data sizes:

n O(1) O(log n) O(n) O(n log O(n?) 0O(2"n)
)
10 1 3 10 33 100 1024
100 1 7 100 664 10000 huge
number
1000 1 10 1000 9966 10000 impossi
(0]0] ble
1010) G, [010) ~{M
0O(n?) vs O(n) (n=100) O(n) vs O(log n) 0O(2"n) (n=10) O(1) O(N) O(N) L'n) 02n)
For 100 elements, (n=1000) Exponential complexity OlogN) (NLogN) ONLog ‘2)
quadratic complexity With 1000 elements, linear ~ Quickly becomes infeasible
requires 100 times more search is significantly even for small n (1024

operations than linear. slower than logarithmic. operations for n=10).

Practical Complexity Analysis

Time Complexity

1 e Count the number of basic operations
e Consider the worst case
¢ |gnore constants and lower-order terms

Space Complexity

Additional memory used by the algorithm

N

Do not count input data

Important for large data volumes

Practical Considerations

Data size in real-world problems

W

Frequency of operation execution

Available system resources

Let's add examples of analyzing simple algorithms to reinforce understanding of these
concepts.

Algorithm Complexity Evaluation

In the world of programming, algorithm efficiency is key to creating fast and scalable
solutions. Complexity evaluation allows us to predict how an algorithm will perform as
data volume increases, and to choose the most suitable tool for each task.

Performance Scalability

How quickly an algorithm completes The algorithm's ability to efficiently

a task depending on the size of the process large volumes of information.
input data.

Resource Optimization

Choosing the best solution considering execution time and memory usage.

CLASSIFICATION Classification of Search
Algorithms

W v

a Z

Linear Search

Sequentially checks each element. Works with any data but is slow for large
volumes.

o Versatility
e Simplicity of implementation
e Does not require sorting

Binary Search
Divides the search area in half at each step. Very fast, but requires sorted data.

e High speed
e Logarithmic complexity
¢ Requires sorting

[JJ Implementation variants: iterative (using loops) and recursive (function calls
itself)

Linear Search (Sequential Search)

How it works

Checks each element of an array in order until the desired value is
found or all elements have been examined.

e Suitable for unsorted data

e Time complexity: O(n)

e Space complexity: O(1)

int linearSearch(int arr[], int n, int x) {
for (inti=0;i<n;i++){

if (arr[i] == x)
return i; // found
}

return -1; // not found

}

Real-life example

Searching for a lost key in a messy pile of items — checking each item
until the key is found.

Advantages and Disadvantages
of Linear Search

¥ Advantages { Disadvantages

¢ Simplicity of implementation — e Slow on large data sets — time
just a few lines of code grows linearly

o Versatility — works with any data ¢ Inefficient for frequent searches

« No pre-processing required — can — checks all elements every time
be applied immediately e Does not utilize order — ignores

o Efficient for small arrays — for n < data sorting

100, the difference is insignificant

Linear search is optimal when data is small or constantly changing

Binary Search

Divide and Conquer Principle Requires Sorting

We divide the problem in half at each Works only with a sorted data array.
step, discarding half of the elements.

Logarithmic Complexity

ALGORITHM

O(log n) — very fast even for millions of elements.

Real-life example: searching for a word in a dictionary or a surname in an alphabetical
list. We intuitively use the binary principle by opening the dictionary roughly in the
middle.

How Binary Search Works

Step 1: Find the Middle

@ Calculate the middle index of the array and compare the element at this
position with the target value

Step 2: Choose Direction

C:' If the target is less than the middle element, go to the left half; if greater,
go to the right half of the array

Step 3: Repeat the Process

>
«’/ Repeat the steps for the selected half until the element is found or the
search area becomes empty

[JJ With each iteration, the number of elements to check is halved!

Iterative Binary Search

Implementation using a while loop. We use pointers for the left and right boundaries of
the search area.

int binarySearchlterative(int arr[], int n, int x) {
int left=0, right=n-1;

while (left <= right) {
// Avoid overflow
int mid = left + (right - left) / 2;

if (arr[mid] == x)
return mid,;
else if (arr[mid] < x)
left = mid + 1;
else
right =mid - 1;
}

return -1; // not found

}

Advantages Important detail

e Saves memory The formula left + (right - left) / 2
e Faster execution prevents overflow when working with

. large numbers
e Easier to understand 9

Recursive Binary Search

An implementation where the function calls itself with a reduced search range.

int binarySearchRecursive(int arr[], int left, int right, int x) {
if (left > right)
return -1; // base case

int mid = left + (right - left) / 2;

if (arr[mid] == x)

return mid;
else if (arr[mid] > x)

return binarySearchRecursive(arr, left, mid - 1, x);
else

return binarySearchRecursive(arr, mid + 1, right, x);

}

Base Case Recursive Call

Condition for stopping recursion: left The function calls itself with new
> right search boundaries

Code Elegance

A more natural expression of the "divide and conquer" algorithm

Comparison of Linear and Binary Search

ARCA
L eop
agqnp
oupl
rili
irec
texa
hni b
neti

nyl

ti

st

L NOS
io(m
nnna
ee) |
a |

nNn< QO T SOV OO+ O nm S5 o O

BSOL
io(a
nrilr
atog
rege
ydna

N
=

=

o< QO

w ® >0 - 00 O »n + 5 O c O O® " —h<

1000 10 100X

Linear: 1000 operations Binary: 10 operations Speed Difference

for an array of 1000 elements for the same array of 1000 elements binary search is 100 times faster

Real-World Examples

Linear Search

o Attendance Check
A teacher reads the list of students
in order and marks those present

o Email Search
Reviewing emails in an inbox one by
one to find the desired one

e Searching an Unordered List

Finding an item in a randomly
arranged warehouse

Binary Search

e Phone Book Search

Finding a last name in an
alphabetical directory — opening
approximately to the correct letter

Number Guessing Game
Playing "guess the number from 1 to
100" — each time halving the range
Optimal Weight Search

Determining the maximum load a
bridge can withstand

el Wocal Events

Q Recipes

Local Events il Local Events

Practical Nuances

Sorting Cost

Binary search requires prior sorting of data, which takes O(n log n) time. This is
only justified for multiple searches.

Data Size Matters

For arrays with fewer than 50-100 elements, the performance difference is
insignificant. Linear search might even be faster due to its simplicity.

Built-in Functions in C++

The standard library provides: std::find (linear), std::binary_search,
std::lower_bound, std::upper_bound.

Choosing Data Structure

For frequent searches, consider using hash tables (O(1)) or balanced search trees.

Colllecttive
LE:LCEVVEVE

Lecture Outcomes

Sumnary - - =
’ Fundamental Nature of Balance of Simplicity and
Algorithms Efficiency
Search algorithms underpin the Linear search is universal and simple,
operation of most software systems but slow. Binary search is fast, but
Sonchstion’ B — from search engines to databases. requires additional conditions.

Implementation Choice

Iterative and recursive versions of algorithms have their own advantages
depending on the context of use.

Leaning

=y

Understanding the principles of search algorithms is key to creating efficient
software solutions

Questions for Discussion

1 Whenis linear search preferable?

Consider situations where simplicity and universality are more important than
speed. Discuss cases with small arrays, frequent data changes, or when sorting
is too expensive.

2 Recursion vs iteration in binary search

Compare code readability, performance, and memory usage. In which cases is
the recursive version more natural to understand?

3 Why use ready-made solutions?

Discuss the advantages of library functions: optimization, testing,
standardization. When is it worthwhile to implement algorithms yourself?

Additional Materials

Practical Exercises

¢ Implement both search algorithms

e Measure execution time on arrays of
different sizes

e Compare the performance of
iterative and recursive versions

¢ Analyze the impact of data type on
search speed

Topics for Further Study

Interpolation search

Exponential search

Searching in multidimensional arrays
Hash tables and their applications

[J) Next Lecture: Sorting Algorithms — we will learn how to prepare data for

efficient binary search

