
Search Algorithms
Exploring linear and binary search: from theory to practice in C++

Lecture Plan: "Search
Algorithms"
01

Motivation and Examples

Why search algorithms are needed in everyday life and programming

02

Classification of Methods

Linear vs. binary search, iterative and recursive approaches

03

Practical Implementation

Writing C++ code, complexity and performance analysis

04

Comparison and Conclusions

When to use which algorithm, practical recommendations

Lecture Title

Search
Algorithms
Topics to Cover

Linear Search

Binary Search

Iterative Approach

Recursive Approach

Lecture Goal

Understand the principles of search
algorithms, learn to implement them in
C++, and choose the optimal approach
for specific tasks. We will explore how
computers efficiently find necessary
data in arrays and other structures.

Motivation and Real-Life Examples

Searching for a book on a
shelf

We browse books one by one until we
find the desired one. This is a classic
example of linear search 4 a simple,
but not always fast approach.

Searching for a word in a
dictionary

We open the dictionary in the middle
and decide whether to search in the
first or second half. We repeat until the
word is found 4 this is the principle of
binary search.

Computer Systems

Searching for a contact on a phone, a
file in a folder, a record in a database 4
search algorithms are used everywhere
to quickly retrieve the necessary
information.

Search algorithms are the foundation of many software solutions. Understanding their principles will help create more efficient applications.

Main Types of Algorithm Complexity
Asymptotic notations are used to evaluate algorithm performance, describing how the execution time or memory usage of an algorithm grows with an
increase in input data size.

Big-O (O-notation)

The upper bound of function growth 3 the
worst-case scenario for execution.

Big-Omega («-notation)

The lower bound of function growth 3 the
best-case scenario for execution.

Theta (�-notation)

A precise asymptotic estimate, covering
both worst and best cases.

Main Types of Algorithm
Complexity

O(1) - Constant

Time does not depend on data size. Example: accessing an array element by
index

O(log n) - Logarithmic

Time grows slowly. Example: binary search

O(n) - Linear

Time is proportional to the number of elements. Example: linear search

4

O(n log n) - Linearithmic

Efficient sorting algorithms. Example: MergeSort

5

O(n²) - Quadratic

Each element is compared with all others. Example: bubble sort

O(2^n) - Exponential

Time doubles with each increment. Example: subset enumeration

Visual Comparison of Complexity
Growth
Comparison table for different data sizes:

n O(1) O(log n) O(n) O(n log
n)

O(n²) O(2^n)

10 1 3 10 33 100 1024

100 1 7 100 664 10000 huge
number

1000 1 10 1000 9966 10000
00

impossi
ble

100x
O(n²) vs O(n) (n=100)

For 100 elements,
quadratic complexity

requires 100 times more
operations than linear.

100x
O(n) vs O(log n)

(n=1000)

With 1000 elements, linear
search is significantly

slower than logarithmic.

~1M
O(2^n) (n=10)

Exponential complexity
quickly becomes infeasible

even for small n (1024
operations for n=10).

Practical Complexity Analysis

1

Time Complexity

Count the number of basic operations

Consider the worst case

Ignore constants and lower-order terms

2

Space Complexity

Additional memory used by the algorithm

Do not count input data

Important for large data volumes

3

Practical Considerations

Data size in real-world problems

Frequency of operation execution

Available system resources

Let's add examples of analyzing simple algorithms to reinforce understanding of these
concepts.

Algorithm Complexity Evaluation
In the world of programming, algorithm efficiency is key to creating fast and scalable
solutions. Complexity evaluation allows us to predict how an algorithm will perform as
data volume increases, and to choose the most suitable tool for each task.

Performance

How quickly an algorithm completes
a task depending on the size of the
input data.

Scalability

The algorithm's ability to efficiently
process large volumes of information.

Resource Optimization

Choosing the best solution considering execution time and memory usage.

Classification of Search
Algorithms

Linear Search

Sequentially checks each element. Works with any data but is slow for large
volumes.

Versatility

Simplicity of implementation

Does not require sorting

Binary Search

Divides the search area in half at each step. Very fast, but requires sorted data.

High speed

Logarithmic complexity

Requires sorting

Implementation variants: iterative (using loops) and recursive (function calls
itself)

Linear Search (Sequential Search)

How it works

Checks each element of an array in order until the desired value is
found or all elements have been examined.

Suitable for unsorted data

Time complexity: O(n)

Space complexity: O(1)

Real-life example

Searching for a lost key in a messy pile of items 4 checking each item
until the key is found.

int linearSearch(int arr[], int n, int x) {
 for (int i = 0; i < n; i++) {
 if (arr[i] == x)
 return i; // found
 }
 return -1; // not found
}

Advantages and Disadvantages
of Linear Search

' Advantages

Simplicity of implementation 4
just a few lines of code

Versatility 4 works with any data

No pre-processing required 4 can
be applied immediately

Efficient for small arrays 4 for n <
100, the difference is insignificant

o Disadvantages

Slow on large data sets 4 time
grows linearly

Inefficient for frequent searches
4 checks all elements every time

Does not utilize order 4 ignores
data sorting

Linear search is optimal when data is small or constantly changing

Binary Search

Divide and Conquer Principle

We divide the problem in half at each
step, discarding half of the elements.

Requires Sorting

Works only with a sorted data array.

Logarithmic Complexity

O(log n) 4 very fast even for millions of elements.

Real-life example: searching for a word in a dictionary or a surname in an alphabetical
list. We intuitively use the binary principle by opening the dictionary roughly in the
middle.

How Binary Search Works

Step 1: Find the Middle

Calculate the middle index of the array and compare the element at this
position with the target value

Step 2: Choose Direction

If the target is less than the middle element, go to the left half; if greater,
go to the right half of the array

Step 3: Repeat the Process

Repeat the steps for the selected half until the element is found or the
search area becomes empty

With each iteration, the number of elements to check is halved!

Iterative Binary Search
Implementation using a while loop. We use pointers for the left and right boundaries of
the search area.

int binarySearchIterative(int arr[], int n, int x) {
 int left = 0, right = n - 1;

 while (left <= right) {
 // Avoid overflow
 int mid = left + (right - left) / 2;

 if (arr[mid] == x)
 return mid;
 else if (arr[mid] < x)
 left = mid + 1;
 else
 right = mid - 1;
 }
 return -1; // not found
}

Advantages

Saves memory

Faster execution

Easier to understand

Important detail

The formula left + (right - left) / 2
prevents overflow when working with
large numbers

Recursive Binary Search
An implementation where the function calls itself with a reduced search range.

int binarySearchRecursive(int arr[], int left, int right, int x) {
 if (left > right)
 return -1; // base case

 int mid = left + (right - left) / 2;

 if (arr[mid] == x)
 return mid;
 else if (arr[mid] > x)
 return binarySearchRecursive(arr, left, mid - 1, x);
 else
 return binarySearchRecursive(arr, mid + 1, right, x);
}

Base Case

Condition for stopping recursion: left
> right

Recursive Call

The function calls itself with new
search boundaries

Code Elegance

A more natural expression of the "divide and conquer" algorithm

Comparison of Linear and Binary Search

A
l
g
o
r
i
t
h
m

R
e
q
u
i
r
e
m
e
n
t
s

C
o
m
p
l
e
x
i
t
y

A
p
p
l
i
c
a
b
i
l
i
t
y

L
i
n
e
a
r

N
o
n
e

O
(
n
)

S
m
a
l
l
o
r
u
n
s
o
r
t
e
d
a
r
r
a
y
s

B
i
n
a
r
y

S
o
r
t
e
d

O
(
l
o
g
n
)

L
a
r
g
e
a
r
r
a
y
s
,
f
r
e
q
u
e
n
t
s
e
a
r
c
h
e
s

1000
Linear: 1000 operations

for an array of 1000 elements

10
Binary: 10 operations

for the same array of 1000 elements

100X
Speed Difference

binary search is 100 times faster

Real-World Examples

Linear Search

Attendance Check

A teacher reads the list of students
in order and marks those present

Email Search

Reviewing emails in an inbox one by
one to find the desired one

Searching an Unordered List

Finding an item in a randomly
arranged warehouse

Binary Search

Phone Book Search

Finding a last name in an
alphabetical directory 4 opening
approximately to the correct letter

Number Guessing Game

Playing "guess the number from 1 to
100" 4 each time halving the range

Optimal Weight Search

Determining the maximum load a
bridge can withstand

Practical Nuances

Sorting Cost

Binary search requires prior sorting of data, which takes O(n log n) time. This is
only justified for multiple searches.

Data Size Matters

For arrays with fewer than 50-100 elements, the performance difference is
insignificant. Linear search might even be faster due to its simplicity.

Built-in Functions in C++

The standard library provides: std::find (linear), std::binary_search,
std::lower_bound, std::upper_bound.

Choosing Data Structure

For frequent searches, consider using hash tables (O(1)) or balanced search trees.

Lecture Outcomes

Fundamental Nature of
Algorithms

Search algorithms underpin the
operation of most software systems
4 from search engines to databases.

Balance of Simplicity and
Efficiency

Linear search is universal and simple,
but slow. Binary search is fast, but
requires additional conditions.

Implementation Choice

Iterative and recursive versions of algorithms have their own advantages
depending on the context of use.

Understanding the principles of search algorithms is key to creating efficient
software solutions

Questions for Discussion

1 When is linear search preferable?

Consider situations where simplicity and universality are more important than
speed. Discuss cases with small arrays, frequent data changes, or when sorting
is too expensive.

2 Recursion vs iteration in binary search

Compare code readability, performance, and memory usage. In which cases is
the recursive version more natural to understand?

3 Why use ready-made solutions?

Discuss the advantages of library functions: optimization, testing,
standardization. When is it worthwhile to implement algorithms yourself?

Additional Materials

Practical Exercises

Implement both search algorithms

Measure execution time on arrays of
different sizes

Compare the performance of
iterative and recursive versions

Analyze the impact of data type on
search speed

Topics for Further Study

Interpolation search

Exponential search

Searching in multidimensional arrays

Hash tables and their applications

Next Lecture: Sorting Algorithms 4 we will learn how to prepare data for
efficient binary search

